
CHAPTER 1

Topology

BY

Dr. Dibyendu De

Associate Professor

Department of Mathematics

University Of Kalyani

West Bengal, India

E-mail : dibyendude@gmail.com

1



Module-2: Base of Topological

spaces

Since open sets are defined in terms of open intervals many arguments with open sets

in R reduce to looking at what happens with open intervals. A similar statement holds

for Rn with open balls in place of open intervals. In each case arbitrary open sets are

unions of the special open sets given by open intervals, and balls. Generalizing this idea

we introduce the following definition.

Definition 1. Let X be a nonempty set. A collection B is said to be a basis for some

topology on X if B satisfies the following two properties:

(1) Every point x ∈ X lies in some set B ∈ B .

(2) For each pair of sets B1, B2 in B and each point x ∈ B1 ∩ B2 there exists a set

B3 in B with x ∈ B3 ⊂ B1 ∩B2 .

The topology generated by a basis B, generally denoted by τ(B) can be defined as

follows :

A subset O ⊂ X is to be declared as open if for any x ∈ O there exists some B ∈ B

such that x ∈ B ⊂ O.

It needs to prove that this τ(B) is in fact a topology.

Theorem 1. Let X be a non empty set and B be a basis. Let τ(B) be the collection

defined as follows: U ∈ τ(B) if for each x ∈ U there exists some B ∈ B with the property

x ∈ B ⊂ U . Then τ(B) is a topology on X.

Proof. Vacuously ∅ ∈ τ(B) and X ∈ τ(B) is obvious.

That τ(B) is closed under arbitrary union is also clear.

Finite intersection property follows from point (2) of definition of basis.
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Most known example is that R with usual topology has the following two bases:

1. {(a, b) : a, b ∈ R}

2. {(a, b) : a, b ∈ Q}.

Another way of describing the topology generated by a basis is given in the following

lemma:

Lemma 1. Let X be a set; let B be a basis on X. Then τ(B), the topology generated by

B equals the collection of all unions of elements of B.

Proof. Since τ(B) is a topology generated by B, all possible union of members of B is a

subset of τ(B). Conversely, given U ∈ τ(B) choose for each x ∈ U an element Bx of B

such that x ∈ Bx ⊂ U . Then U =
⋃

x∈U Bx, so U equals a union of elements of B.

Observation 1. The above theorem shows that a topology on a set is all possible unions

of members of base.

In the above Theorem we mentioned how to from topology from a basis. The following

is one way of obtaining a basis for a given topology. We shall use it frequently.

Proposition 1. Let B is a collection of open sets of a topological space X satisfying

that for each open set U of X and each x in U , there is an element in B ∈ B such that

x ∈ B ⊂ U . Then B is base for the topological space X.

Proof. The first condition, is obvious. For the second condition, suppose B1 and B2 are

elements of B and x ∈ B1 ∩ B2. Since B1 ∩ B2 is an open set there exists some B3 ∈ B

such that x ∈ B3 ⊂ B1 ∩B2.

The topology generated by B equals to the topology of X, is left as an exercise.

We have already seen that both the following sets generates the usual topology on R.

1. {(a, b) : a, b ∈ R}

2. {(a, b) : a, b ∈ Q}. But when topologies are given by bases, it is useful to have a

criterion in terms of the bases for determining whether one topology is finer than another.

Proposition 2. Let B and B1 for the topologies τ1 and τ2 on a set X. Then the following

conditions are equivalent.
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(1) τ2 is finer than τ1.

(2) For each x ∈ X and each basis element B ∈ B containing x, there is a basis element

B2 ∈ B2 such that x ∈ B2 ⊂ B1.

Proof. 1) ⇒ 2). Given an element U of τ1, we wish to show that U is in τ2 also. Let

x ∈ U . Since B1 generates τ1 there is an element B ∈ B such that x ∈ B ⊂ U . Condition

2) tells us there exists an element B2 ∈ B2 such that x ∈ B2 ⊂ B1. Then x ∈ B2 ⊂ U ,so

U is in τ2 by definition.

2) ⇒ 1). We are given x ∈ X and B ∈ B, with x ∈ B. Now B belongs to τ1 by

definition and τ1 ⊂ τ2. by condition 1); therefore, B ∈ τ2 Since τ2 is generated by B2
there is an element B2 ∈ B2 such that x ∈ B2 ⊂ B1.

Example 1. 1. One of the most beautiful example of the above Theorem is that the set

{(a, b) : a, b ∈ R} and {(a, b) : a, b ∈ Q} both generates the same topology R. It happens

as Q is dense in R.

2. Another beautiful application of the above Theorem is that open rectangles in R2 and

open discs in R2 generates the same topology on R2. In fact if we take an open disk D

and a point x in D then we can inscribed a rectangle in D containing x. Similarly the

other. Therefore the topologies generated by them are equivalent.

Example 2. Sorjenfrey line is an extremely important topological space. This is alter-

natively known as lower limit topology.

Consider the collection B = {[a, b) : a, b ∈ R} of subsets of R. Then it is a basis for

some topology on R. In fact

a. For any r ∈ R, r ∈ [r, r + 1),

b. If [a, b) and [c, d) be two members of B and r ∈ [a, b)∩[c, d) then clearly the intersection

is in B.
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Therefore the collection B generates some topology on R, which is known as lower

limit topology and denoted by Rl.

An interesting point to observe that, Rl has a basis each of whose member is closed

as well as open. In fact each set [a, b) is also closed in Rl. In fact if x 6∈ [a, b) then either

x < a or x ≥ b. In the first case we can choose r ∈ (x, a) sot that [x, a) misses [a, b) and

in the second case [x, x + 1) misses [a, b). Therefore x is not a limit point of [a, b) and

hence [a, b) is a closed set.

Another important observation about Rl is that each open interval in Rl is open, that

means that the topology of Rl is larger than the usual topology.

Example 3. Show that the collection

B = {[x, y) : x < y and x, y ∈ Q}

is a basis that generates a topology different from the lower limit topology on R.

Example 4. Consider the set K = { 1
n

: n ∈ N} and the subsets of the form (a, b) \K.

The collection

B1 = {(a, b) ⊂ R : a, b ∈ R} ∪ {(a, b) \K ⊂ R : a, b ∈ R}

is a basis for a topology on R: The topology it generates is known as the K-topology on R:

Clearly, K-topology is finer than the usual topology. Note that there is no neighbourhood

of 0 in the usual topology which is contained in (−1, 1) \ K ∈ B. This shows that the

usual topology is not finer than K-topology. The same argument shows that the lower

limit topology is not finer than K-topology. Consider next the nbd [2, 3) of 2 in Rl. Then

there is no nbd of 2 in the K-topology which is contained in [2, 3). Thus we conclude that

the K-topology and the lower limit topology are not comparable.

A partially ordered set is a pair (X,≤), where X is a set and ≤ is a relation on X such

that: (i) x ≤ x for all x; (ii) if x ≤ y and y ≤ z, then x ≤ z; (iii) if x ≤ y and y ≤ x, then

x = y. Let us call a partially ordered set linearly ordered if whenever x and y are in X,

either x ≤ y or y ≤ x. (For example, X = R or any of its subsets is linearly ordered.) (a)

If X is a partially ordered set and S is the collection of all sets having the form of either
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{y : y ≤ x and y 6= x} or {y : x ≤ y and y 6= x}, we can show that S is a subbase for a

topology on X. This is called the order topology on X. (b) Show that if (X,≤) is linearly

ordered, then the order topology satisfies the Hausdorff property. Can you find another

condition on the ordering such that the order topology has the Hausdorff property? (c)

When a and b are elements of a partially ordered space, let (a, b) = {x ∈ X : a < x < b}.

If (X,≤) is linearly ordered, show that (a, b) = {x ∈ X : a < x < b} is a base of the

order topology.

Definition 2. A neighborhood of a point x in a topological space X is any set A ⊂ X

that contains an open set O containing x. Dually x is said to be an interior point of

A; that is, A is a neighbourhood of x if and only if x ∈ A◦. The collection Ax of all

neighbourhoods of x is the neighbourhood system of x.

Proposition 3. The neighbourhood system Ax at x in a topological space X has the

following properties:

(a) Ax 6= ∅, for all x ∈ X

(b) if A ∈ Ax then x ∈ A

(c) if A1, A2 ∈ Ax then A1 ∩ A2 ∈ Ax

(d) if A ∈ Ax then there is a B ∈ Ax such that A ∈ Ay for each y ∈ B

(e) if A ∈ Ax and A ⊂ B then B ∈ Ax.

O ⊂ X is open if and only if O contains a neighbourhood of each of its points. Show

that this conditions generates a unique topology on X.

Proof. Let τ be the collection of all such sets in X. Vacuously ∅ ∈ τ and X ∈ τ is

obvious. Let A1, A2 ∈ τ and x ∈ A1 ∩ A2. Then there exists O1, O2 ∈ Ax such that

x ∈ Oi ⊂ Ai for all i. So by condition (c) A1, A2 ∈ τ . Arbitrary union of membered of τ

is in τ is obvious. Hence τ is a topology.

As an example of this property consider the set of open balls in a metric space.

For a ∈ Z and K ∈ N, we define a+KZ = {a +Kn : n ∈ Z}. We say that A ⊂ Z is

open if for each point a ∈ A, there is a number K ∈ N such that {a+Kn : n ∈ Z} ⊂ A.

In other words, a subset of Z is open if each of its points is contained in an arithmetic

progression belonging to the set. Obviously the sets {a + Kn : n ∈ Z} are open. So the

arithmetic progressions form a basis for the topology. Surprisingly, this basic sets are
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closed also because the complement of a+KZ = {a+Kn : n ∈ Z} is the union of other

arithmetic progressions with the same difference.

There are many proofs that there exist an infinity of primes. Using this topology we

can prove that the infiniteness of primes.

Proposition 4. The number of primes is infinite.

Proof. Since the sets {i, i + d, i + 2d, ........}, i = 1, 2, ...., d are open, pairwise disjoint

and cover the whole N, it follows that each of them is closed. In particular, for each

prime number p the set {p, 2p, 3p, .......} is closed. All together, the set of the form

{p, 2p, 3p, ......} cover N − {1}. Hence if the set of prime numbers were finite, then the

set {1} would be open. However, it is not a union of arithmetic progressions.

Proposition 5. Let X be a set. Given any family S = {Sα : α ∈ I} with X ⊂ ∪αSα.

of subsets of X, there always exist a unique smallest topology generated by S. S is called

a subbasis for τ(S), the topology generated by S.

Proof. Let τ(S) be the intersection of all topologies containing S; such topology exists,

since P(X) is one such. So clearly τ(S) is a topology. It evidently satisfies the re-

quirements of ‘unique’ and ‘smallest’. To verify the members of τ(S) are as described,

note that since S ⊂ τ(S) so τ(S) must contain all the sets listed. Conversely, since
⋃
α

distributes over
⋂

, the sets listed actually do form a topology containing S, and which

therefore contains τ(S).

Remark 1. The construction of a topology from a subbasis loses some control over the

open sets; they build up from the finite intersections of the Sα’s rather than from the Sα

themselves.

Example 5. Every basis for a topology is a subbasis.

(a)S = {(a,∞), (−∞, b) : a, b ∈ R} is a subbasis for the usual topology on R. We can

restrict the numbers a in these intervals to be rational or irrational, and we still have a

subbasis that generates the usual topology.

(b) S = {[a,∞), (−∞, b) : a, b ∈ R} is a subbasis for Rl

(c) S = {R− {a} : a ∈ R} is a subbasis for the cofinite topology on R.
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